Estimating the Expected Reversal Distance after a Fixed Number of Reversals
نویسندگان
چکیده
We address the problem of computing the expected reversal distance of a genome with n genes obtained by applying t random reversals to the identity. A good approximation is the expected transposition distance of a product of t random transpositions in Sn. Computing the latter turns out to be equivalent to computing the coefficients of the length function (i.e. the class function returning the number of parts in an integer partition) when written as a linear combination of the irreducible characters of Sn. Using symmetric functions theory, we compute these coefficients, thus obtaining a formula for the expected transposition distance. We also briefly sketch how to compute the variance. Résumé. Nous posons le problème du calcul de la distance de renversement attendue d’un génome de n gènes obtenue en appliquant t renversements aléatoires de l’identité. Une bonne approximation est la distance de transposition attendue d’un produit de t transpositions aléatoires dans Sn. Calculer cette dernière apparait comme étant équivalent à calculer les coefficients de la fonction de longueur (i.e. la fonction de classe qui retourne le nombre de parts dans une partition d’entiers) lorsqu’elle est exprimée comme combinaison linéaire de caractères irréductibles de Sn. En utilisant la théorie des fonctions symétriques, nous calculons ces coefficients, et obtenons une formule pour la distance de transposition attendue. Nous expliquons également brièvement comment calculer la variance.
منابع مشابه
. C O ] 4 J ul 2 00 6 Prefix reversals on binary and ternary strings ⋆
Given a permutation π, the application of prefix reversal f (i) to π reverses the order of the first i elements of π. The problem of Sorting By Prefix Reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Bounds for sorting by prefix reversal, Discrete Mathematics 27, pp. 47-57), asks for the minimum number of prefix reversals required to sort the elements of a giv...
متن کاملPrefix Reversals on Binary and Ternary Strings
Given a permutation π, the application of prefix reversal f (i) to π reverses the order of the first i elements of π. The problem of sorting by prefix reversals (also known as pancake flipping), made famous by Gates and Papadimitriou (Discrete Math., 27 (1979), pp. 47–57), asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we stud...
متن کاملAn algorithm with linear expected running time for string editing with substitutions and substring reversals
The edit distance between given two strings X and Y is the minimum number of edit operations that transform X into Y without performing multiple operations in the same position. Ordinarily, string editing is based on character insert, delete, and substitute operations. Motivated from the facts that substring reversals are observed in genomic sequences, and it is not always possible to transform...
متن کاملar X iv : m at h / 06 02 45 6 v 1 [ m at h . C O ] 2 1 Fe b 20 06 Prefix reversals on binary and ternary strings ⋆
The problem Sorting By Prefix Reversals (also known as pancake flipping), made famous by Gates and Papadimitriou [7], asks for the minimum number of prefix reversals required to sort the elements of a given permutation. In this paper we study a variant of this problem where the prefix reversals act not on permutations but on strings over a fixed-size alphabet. We demonstrate polynomial-time alg...
متن کاملAn Algorithm to Find All Sorting Reversals
The problem of estimating evolutionary distance from differences in gene order has been distilled to the problem of finding the reversal distance between two signed permutations. During the last decade, much progress was made both in computing reversal distance and in finding a minimum sequence of sorting reversals. For most problem instances, however, many minimum sequences of sorting reversal...
متن کامل